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Abstract

In this paper, a systematic approach for the free vibration analysis of a planar circular curved beam
system is presented. The system considered includes multiple point discontinuities such as elastic supports,
attached masses, and curvature changes. Neglecting transverse shear and rotary inertia, harmonic wave
solutions are found for both extensional and inextensional curved beam models. Dispersion equations are
obtained and cut-off frequencies are determined. Wave reflection and transmission matrices are formulated,
accounting for general support conditions. These matrices are combined, with the aid of field transfer
matrices, to provide a concise and efficient method for the free vibration problem of multi-span planar
circular curved beams with general boundary conditions and supports. The solutions are exact since the
effects of attenuating wave components are included in the formulation. Several examples are presented
and compared with other methods.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The vibration of planar curved beams, arches and rings have been the subject of numerous
studies due to their wide variety of potential applications, such as bridges, aircraft structures, and
turbomachinery blades. These structures are modelled as either extensional (including the
extension of the neutral axis) or inextensional (neglecting the extension of the neutral axis), with
Euler–Bernoulli and Timoshenko curved beams having been formulated for each model.
Literature reviews on the vibration of curved beams, rings and arches are found in Refs. [1–3].
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Many methods have been employed to study the free vibration of curved members. Den Hartog
[4] obtained the natural frequencies of circular arcs with fixed and hinged boundary conditions
using the Rayleigh–Ritz method. Ball [5] utilized the finite difference method for the dynamic
analysis of rings. Many studies, such as Rao and Sundararajan [6] and Tufekci and Arpaci [7],
solve the equations of motion governing the in-plane vibration for classical boundary conditions.
Wang and Lee [8] presented a dynamic slope-deflection method for the free vibration of multi-
span circular frames. Using a transfer matrix approach, Bickford and Strom [9] obtained the
natural frequencies and mode shapes for both the in-plane and out-of-plane vibrations of plane
curved beams accounting for shear deformation, rotary inertia and extension of the neutral axis.
Issa et al. [10] formulated a general dynamic stiffness matrix for a circular curved member
including the effects of transverse shear, rotary inertia and the extensional effect of the neutral
axis. Chidamparam and Leissa [11] incorporated the Galerkin method to study the in-plane free
vibrations of extensional and inextensional loaded circular arches. Mau and Williams [12] solved
the arch vibration problem using the Green function. Numerous studies have developed curved
beam finite elements for both Timoshenko and Euler–Bernoulli curved beam models [13–19].
Another very useful method in vibration analysis is the wave propagation approach. This

method makes use of the well-known fact that the vibration of elastic structures such as strings,
beams, and plates can be described in terms of waves propagating and attenuating in waveguides
[20,21]. The compact and systematic methodology of this approach allows the analysis of complex
structures such as multi-span beams, trusses, aircraft panels with periodic supports, as well as
revealing important physical characteristics associated with the vibration of the structure [22,23].
One of the earliest investigations of wave motion in curved beams was done by Love [24]. He
assumed a constant radius of curvature and neglected the extension of the neutral axis. Wittrick
[25] studied the wave propagation in helical springs while Farshad [26] investigated wave
propagation in prestressed curved rods. Morley [27] considered elastic waves in a curved rod,
accounting for shear deformation, rotary inertia and extension of the neural axis. Phase velocity
equations show that there is no significant interaction between extension and flexure for the case
of slight curvature. Graff [28] developed equations for a ring, accounting for extensional, shear
and rotary inertia. Dispersion curves are presented showing the effects of curvature, shear, and
inertia on the wave propagation.
The above-cited curved beam wave analysis studies all focus on wave propagation

characteristics. Mallik and Mead [29] appear to be one of the first to utilize wave analysis
techniques in determining natural frequencies and modeshapes of curved members. They
determined propagation constants and receptance functions to study circular rings on multiple,
equi-spaced radial supports. In their study, only full rings and classical support conditions were
considered. The purpose of this paper is to use wave analysis techniques, specifically wave
reflection and transmission matrices, along with field transfer matrices, to develop a systematic
method for analyzing the free vibration of planar (extensional and inextensional) circular curved
beams. The approach will not only be systematic, but will also account for multiple spans with
discontinuities and general boundary conditions. The principle behind the present approach is
called the phase closure principle [30] (also called the wave-train closure principle [21]). This
principle states that if the phase difference between incident and reflected waves is an integer
multiple of 2p; then the waves propagate at a natural frequency and their motions constitute a
vibration mode.
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The manuscript is organized as follows. The governing equations of motion of a circular curved
beam, neglecting transverse shear and rotary inertia effects, are presented in Section 2 and their
general wave solutions over the entire frequency spectrum are formulated in Section 3. In Section
4, the wave reflection and transmission matrices are derived for the planar circular curved beam
under various point supports. The supports can include translation and rotational springs as well
as an attached mass with rotational inertia. Knowing the reflection and transmission matrices,
Section 5 illustrates a systematic approach, utilizing field transfer matrices, to apply these matrices
in solving the free vibration of multiple span curved beams with discontinuities and general
boundary conditions. Four examples are presented in Section 6 to illustrate the proposed
methodology and compare it with other methods. Summary and conclusions are presented in
Section 7.

2. Governing equations of motion

Consider a thin curved beam, as shown in Fig. 1, whereM is the bending moment, N the tensile
force, and V the shear force. Neglecting the effects of rotary inertia, shear deformations, and
damping, the coupled equations of motion governing the radial displacement, W ; and the
tangential displacement, U ; of the centroidal axis are
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where E denotes Young’s modulus, I the second moment of inertia of the cross-section about the
centroid, y the angular co-ordinate, R the constant radius of curvature for the given range of angle
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Fig. 1. Schematic of a curved beam and sign conventions.
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y; A the cross-sectional area, r the mass density, T the time variable. Details of deriving these
equations of motion are found in Refs. [11,20].
Introduce the following non-dimensional variables and parameters:

u ¼
U

R
; w ¼

W

R
; t ¼

T

T0
; T0 ¼ R2

ffiffiffiffiffiffiffi
rA

EI

r
; k2 ¼

I

AR2
; ð2Þ

where T0 is a characteristic time constant and k is the curvature parameter [11]. Applying Eq. (2)
to Eq. (1) yields the normalized equations of motion:
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3. Harmonic wave solutions

A vibrating beam is a dispersive medium. In a dispersive medium, the phase velocity is not
constant. As such, the simple wave solution of the form f ðs7ctÞ with constant phase velocity c
does not satisfy Eq. (3). Therefore, to assess the wave propagation in the curved beam model, it is
first necessary to determine the condition under which the following wave solutions,

W ðy;TÞ ¼ CWe
iðGRy�OTÞ; ð4aÞ

Uðy;TÞ ¼ CUe
iðGRy�OTÞ; i ¼

ffiffiffiffiffiffiffi
�1

p
; ð4bÞ

or in a non-dimensional form,

wðy;TÞ ¼ Cwe
iðgy�otÞ; ð5aÞ

uðy; tÞ ¼ Cue
iðgy�otÞ; 0pyp2p; ð5bÞ

satisfy the equations of motion, where g and o are the non-dimensionalized wavenumber and
frequency, respectively, and defined as

g ¼ RG; o ¼ OT0: ð5cÞ

Note that the wave amplitudes Cw and Cu in Eqs. (5) are not independent and their amplitude
ratio is

a ¼
Cu

Cw

¼
igð1þ g2k2Þ

g2ð1þ k2Þ � k2o2
: ð6Þ

Substituting the harmonic solutions (5) into Eq. (3) gives

1þ k2ðg4 � o2Þ igð1þ g2k2Þ

igð1þ g2k2Þ �g2 þ k2ðo2 � g2Þ

" #
Cw

Cu

( )
¼ 0: ð7Þ
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Since the determinant of the matrix in Eq. (7) must vanish for non-trivial solutions, one can
obtain the dispersion equation in terms of the wavenumber g;

g6 þ ð�2� k2o2Þg4 þ f1� ð1þ k2Þo2gg2 þ ðk2o2 � 1Þo2 ¼ 0: ð8Þ

It can be readily seen that if k ¼ 0; Eq. (8) becomes identical to the dispersion equation of an
inextensional curved beam for which w ¼ �du=dy: In this case, Eq. (3) reduces to
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It should be noted that for a given cross-sectional geometry, there is a limiting value of k for which
Eq. (8) is valid. This is due to the fact that for large values of k; the vibration modes may not be
realistic due to the wavelengths being small in comparison to the thickness of the beam. For
example, the limiting value of k is 1

2
for a circular beam, meaning that R is equal to the radius of

the cross-section of the beam.
Shown in Fig. 2 is the general behavior of the positive branches of the frequency spectrum for the

extensional (k ¼ 0:0289; see Figs. 2(a) and (b)) and inextensional (k ¼ 0; see Figs. 2(c) and (d))
curved beam models. Comparing Figs. 2(a) and (c), it is clearly seen that there exists an additional
frequency spectrum emerging from a non-zero frequency for the extensional curved beam model.
This additional frequency spectrum represents the coupled flexural and extensional mode, with the
extensional mode dominating. The non-zero cut-off frequency, denoted by oc; defining this additional
frequency spectrum can be readily identified by taking the long-wavelength limit of Eq. (8); i.e.,

lim
g-0

ð8Þ ¼ ðk2o2 � 1Þo2 ¼ 0; ð10Þ

which gives two roots: oc ¼ 0 and 1=k: Considering the first root, as o approaches oc ¼ 0; Eq. (6)
reveals that Cw ¼ 0 and Cua0; and therefore Eq. (4) gives w ¼ 0 and u ¼ Cu: Thus, there is only
tangential motion and no radial displacement. Considering the second root, as o approaches to
oc ¼ 1=k; Cwa0 and Cu ¼ 0; so that w ¼ Cwe

�ði=kÞt (standing wave) and u ¼ 0; resulting in only
radial motion and no tangential displacement. Thus, o ¼ oc ¼ 1=k is the frequency when the
wavelength of extensional waves in a straight rod is equal to the circumference, 2pR; and is known as
the ring frequency in cylindrical shell dynamics [31].
The six roots (essentially three complex conjugates) of Eq. (8) can be obtained in a closed form

by transforming Eq. (8) into a cubic equation. This results in four different sets of roots,
indicating that four distinct wave motions exist in an extensional curved beam depending on the
vibration frequency o and the curvature parameter k: Hence, it is possible to classify the general
wave solutions into four different cases as follows:

Case I (all six g’s are real):
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Case II (two g’s are real and four g’s are complex):
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Fig. 2. Frequency spectra of a curved beam for which (a) real and (b) imaginary branches when k ¼ 0:0289
(extensional); (c) real and (d) imaginary branches when k ¼ 0 (inextensional).
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Case III (two g’s are real and four g’s are imaginary):

wðy; tÞ ¼ ðCþ
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Case IV (four g’s are real and two g’s are imaginary):

wðy; tÞ ¼ ðCþ
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where the coefficients Cþ and C� denote positive-travelling and negative-travelling waves along
the curved beam respectively. Note that the wave solutions for Cases I and II are identical in form,
so that they can be treated as a single case for computational purposes.
In the present formulation, e�ig3y and eig3y represent the wave components in which the

extensional mode dominates, as indicated in Fig. 2. It can then be seen that these wave
components play an important role in determining the overall wave motion, particularly when
o > oc (g3 is real). However, when oooc; these wave components oscillate but spatially decay (g3
is complex) or attenuate (g3 is imaginary). The contribution of these attenuating wave components
to the overall wave motion is small and can be neglected when the distance between the origin of
disturbance and the boundary/discontinuity is very large since they decay exponentially with the
spatial co-ordinate. Note that when these wave components are attenuating or are neglected over
the entire frequency range, the problem becomes essentially the same as the inextensional curved
beam model in which the wave motion of Case IV does not exist. In other words, when the curved
beam is modelled as inextensional, only one pair of wave components (which are flexural mode
dominating waves) propagates and the other two pairs of wave components attenuate when
o > 4:1996 (see Fig. 2(b)). However, for the extensional curved beam model, both the extensional
and flexural mode dominant waves propagate when o > oc: Therefore, the accuracy of the
inextensional model for predicting natural or forced vibration frequencies depends strongly on the
location of the frequency of interest relative to the cut-off frequency oc ¼ 1=k: That is, for
example, the accuracy of the nth natural frequency on predicted by the inextensional curved beam
model may significantly decrease if on is much higher than oc: This is true even for lower
vibration modes since the wave components associated with extensional modes dominating are
considered as attenuating instead of propagating in the inextensional model.

4. Wave reflection and transmission matrices

When a wave is incident upon a discontinuity such as an intermediate support, a different
waveguide, or a boundary, it is reflected and/or transmitted at different rates depending on the
properties of the discontinuity. A wave either propagates or attenuates; attenuating waves are
called near fields. When the distance between discontinuities is relatively small, near fields play an
important role in the wave motions by contributing significant amounts of energy to the total
power flow [32]. In this section, reflection and transmission matrices of waves incident upon
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various kinds of point discontinuities are derived. These matrices are needed for the wave-train
closure principle, which provides a systematic approach to free vibration analysis.

4.1. Wave reflection and transmission at a kinetic discontinuity

Consider a curved beam model constrained at a local co-ordinate x ¼ 0 as shown in Fig. 3,
where M and JM denote the attached mass and its mass moment of inertia, respectively; Kr

denotes the rotational elastic constraint, Kw the transverse, and Ku the tangential. The tangential
constraint is applicable since the curved beam is extensional. Based on Eqs. (11)–(14), the wave
components are grouped into 3� 1 vectors of positive-travelling waves Cþ and negative-travelling
waves C�; i.e.,

Cþ ¼

Cþ
1

Cþ
2
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3

8><
>:
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>;; ð15aÞ
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C�
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2
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3

8><
>:

9>=
>;: ð15bÞ

Recall that, depending on k; the extensional curved beam model has four different wave solutions
as given by Eqs. (11)–(14). When a set of positive-travelling wave Cþ is incident upon a
discontinuity, it gives rise to a set of reflected waves C� and transmitted waves Dþ: These waves
are related by

C� ¼ rCþ; ð16aÞ
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Fig. 3. Wave reflection and transmission at a kinetic discontinuity.
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where r and t are the 3� 3 reflection and transmission matrices respectively. By suppressing the
temporal terms in the wave solutions (11)–(14), the transverse displacements w� and wþ; the
tangential displacements u� and uþ; and the rotational motion of a cross-section c� and cþ at
the left and right of the discontinuity ðx ¼ 0Þ; respectively, can be expressed in terms of wave
amplitudes of the transverse displacement. For example, in Case II, the resulting equations are

w�ðxÞ ¼ Cþ
w1e

�ig1x þ Cþ
w2e

�ig2x þ Cþ
w3e

�ig3x þ C�
w1e

ig1x þ C�
w2e
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w3e

ig3x; ð17aÞ

u�ðxÞ ¼ a1Cþ
w1e
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w2e
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w3e
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w2e

ig2x

þ a3C�
w3e

ig3x; ð17bÞ

c�ðxÞ ¼
dw�

dy
� u�; ð17cÞ

wþðxÞ ¼ Cþ
w1e

�ig1x þ Cþ
w2e

�ig2x þ Cþ
w3e

�ig3x; ð17dÞ

uþðxÞ ¼ a1Cþ
w1e

�ig1x þ a2Cþ
w2e

�ig2x þ a3Cþ
w3e

�ig3x; ð17eÞ

cþðxÞ ¼
dwþ

dy
� uþ; ð17fÞ

where

an ¼
ignð1þ g2nk2Þ

g2nð1þ k2Þ � k2o2
; n ¼ 1; 2; 3: ð17gÞ

Moreover, the normal force %N7; the shear force %Q7; and the bending moment %M7 at the left and
right of the discontinuity ðx ¼ 0Þ can be expressed in terms of wave amplitudes of the transverse
displacement by applying the relations

%N7 ¼
@u7

@x
þ w7; ð18aÞ

%Q7 ¼
@2u7

@x2
�

@3w7

@x3
; ð18bÞ

%M7 ¼
@u7

@x
�

@2w7

dx2
: ð18cÞ

Introducing the non-dimensional parameters

ku ¼
KuR3

EI
; kw ¼

KwR3

EI
; kr ¼

KrR

EI
; m ¼

M

rAR
; jm ¼

JM

rAR2
; ð19Þ

and by imposing the geometric continuity

w�ð0Þ ¼ wþð0Þ; ð20aÞ

u�ð0Þ ¼ uþð0Þ; ð20bÞ

c�ð0Þ ¼ cþð0Þ; ð20cÞ
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and the force and moment balance conditions at x ¼ 0;
%Nþ � %N� ¼ k2ðkuuþ þ m .uþÞ; ð21aÞ

%Qþ � %Q� ¼ kwwþ þ m .wþ; ð21bÞ

%M� � %Mþ ¼ krc
þ þ jm .cþ; ð21cÞ

the following set of matrix equations can be established:

1 1 1

�a1 �a2 �a3
a1 � ig1 a2 � ig2 a3 � ig3

2
64

3
75Cþ þ

1 1 1

a1 a2 a3
�a1 þ ig1 �a2 þ ig2 �a3 þ ig3

2
64

3
75rCþ

¼

1 1 1

�a1 �a2 �a3
a1 � ig1 a2 � ig2 a3 � ig3

2
64

3
75tCþ; ð22aÞ

�1� ia1g1 �1� a2g2 �1� a3g3
�ða1 � ig1Þg

2
1 �ða2 � ig2Þg

2
2 �ða3 � ig3Þg

2
3

ðg1 þ ia1Þg1 ðg2 þ ia2Þg2 ðg3 þ ia3Þg3

2
64

3
75Cþ

þ

�1� ia1g1 �1� a2g2 �1� a3g3
ða1 � ig1Þg

2
1 ða2 � ig2Þg

2
2 ða3 � ig3Þg

2
3

ðg1 þ ia1Þg1 ðg2 þ ia2Þg2 ðg3 þ ia3Þg3

2
64

3
75rCþ

¼

�1� ðk2cu þ ig1Þa1 �1� ðk2cu þ ig2Þa2 �1� ðk2cu þ ig3Þa3
cw � ða1 � ig1Þg

2
1 cw � ða2 � ig2Þg

2
2 cw � ða3 � ig3Þg

2
3

ða1 � ig1Þðcr þ ig1Þ ða2 � ig2Þðcr þ ig2Þ ða3 � ig3Þðcr þ ig3Þ

2
64

3
75tCþ; ð22bÞ

where

cu ¼ k2ðku � mo2Þ; ð22cÞ

cw ¼ kw � mo2; ð22dÞ

cr ¼ kr � jmo2: ð22eÞ

By solving Eq. (22), the reflection and transmission matrices, r and t, are obtained. Note that since
there are four different wave motions in the extensional curved beam model, a different set of r
and t must be derived for each case, using the same procedure described above.

4.2. Wave reflection and transmission at a curvature change

Consider the curved beam model with two elements of different curvatures joined at x ¼ 0 as
shown in Fig. 4. For simplicity, assume that the cross-sectional areas and material properties r
and E of the two beam elements are the same. Note that the procedure described here is the
same even if the areas and/or material properties are different. Let the subscripts l and r denote
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x ¼ 0� and x ¼ 0þ regions, respectively, and s ¼ Rr=Rl (curvature ratio). Then, the modified
dispersion equation on the right side of the discontinuity is

g6r þ ð�2� s2k2o2Þg4r þ f1� ðs2 þ k2Þs2o2gg2r þ ðs2k2o2 � 1Þs4o2 ¼ 0: ð23Þ

A detailed derivation of this equation can be found in Appendix A. It is possible that a
wave propagating in x ¼ 0� becomes attenuating after crossing the discontinuity and vice versa
since the wave motion on both sides of the discontinuity, in general, can be different depending
on the frequency and curvature parameter k: Therefore, for an extensional curved beam, there
are mathematically 16 possible combinations of wave motions to be considered since each side
of the discontinuity has four wave motions, Cases I–IV. However, since Cases I and II have
identical forms for their wave solutions, the actual number of combinations to be considered is
nine.
To illustrate the formulation of the wave reflection and transmission matrices, suppose that

waves are travelling from the left to right and the wave motion in x ¼ 0� and x ¼ 0þ are of Cases
II (or I) and III respectively. Then imposing the geometric continuity and force and moment
balance at the discontinuity leads to the following matrix equations:

1 1 1

�a1l �a2l �a3l
a1l � ig1l a2l � ig2l a3l � ig3l

2
64

3
75Cþ

þ

1 1 1

a1l a2l a3l
�a1l þ ig1l �a2l þ ig2l �a3l þ ig3l

2
64

3
75rII2IIICþ

¼

1 1 1

�a1r a2r a3r
s�1ða1r � ig1rÞ �s�1ða2r � ig2rÞ �s�1ða3r � ig3rÞ

2
64

3
75tII2IIICþ; ð24aÞ

0=ξ

+C

C-

+D

lR
rR

Fig. 4. Wave reflection and transmission at a curvature change.
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�1� ia1lg1l �1� a2lg2l �1� a3lg3l
�ða1l � ig1lÞg

2
1l �ða2l � ig2lÞg

2
2l �ða3l � ig3lÞg

2
3l

ðg1l þ ia1lÞg1l ðg2l þ ia2lÞg2l ðg3l þ ia3lÞg3l

2
64

3
75Cþ

þ

�1� ia1lg1l �1� a2lg2l �1� a3lg3l
ða1l � ig1lÞg

2
1l ða2l � ig2lÞg

2
2l ða3l � ig3lÞg

2
3l

ðg1l þ ia1lÞg1l ðg2l þ ia2lÞg2l ðg3l þ ia3lÞg3l

2
64

3
75rII2IIICþ

¼

�s�1ð1þ ia1rg1rÞ �s�1ð1þ ia2rg2rÞ �s�1ð1þ ia3rg3rÞ

�s�3ða1r � ig1rÞg
2
1r s�3ða2r � ig2rÞg

2
2r s�3ða3r � ig3rÞg

2
3r

s�2ðg1r þ ia1rÞg1r s�2ðg2r þ ia2rÞg2r s�2ðg3r þ ia3rÞg3r

2
64

3
75tII2IIICþ; ð24bÞ

where the subscripts II–III of r and t denote a transition of wave solutions from Cases II to III.
Note that the amplitude ratio ar on the right side of the discontinuity is also modified as

anr ¼
ignrðs

2 þ g2nrk
2Þ

g2nrðs2 þ k2Þ � s4k2o2
; n ¼ 1; 2; 3: ð25Þ

By solving Eq. (24), rII2III and tII2III are obtained. The reflection and transmission matrices for
other wave solution combinations can be obtained in a similar manner.

4.3. Wave reflection and transmission at a boundary

Consider an arbitrary boundary condition with translational and rotational springs and an
attached mass as shown in Fig. 5. By imposing the force and moment balance at the boundary,

%N� ¼ �k2ðkuuþ þ m .uþÞ; ð26aÞ

%Q� ¼ �ðkwwþ þ m .wþÞ; ð26bÞ

%M� ¼ kr
@wþ

@x
þ jm

@ .wþ

@x
; ð26cÞ

the reflection matrix can be derived for each case. For example, rII for Case II is

rII ¼ M�1
1 M2; ð27Þ

M1 ¼

1þ ðk2cu þ ig1Þa1 1þ ðk2cu þ ig2Þa2 1þ ðk2cu þ ig3Þa3
cw � ða1 þ ig1Þg

2
1 cw � ða2 þ ig2Þg

2
2 cw � ða3 þ ig3Þg

2
3

ðg1 þ ia1Þð�g1 þ icrÞ ðg2 þ ia2Þð�g2 þ icrÞ ðg3 þ ia3Þð�g31 þ icrÞ

2
64

3
75; ð28aÞ

M2 ¼

�1þ ðk2cu � ig1Þa1 �1þ ðk2cu � ig2Þa2 �1þ ðk2cu � ig3Þa3
�cw � ða1 � ig1Þg

2
1 �cw � ða2 � ig2Þg

2
2 �cw � ða3 � ig3Þg

2
3

ðg1 þ ia1Þðg1 þ icrÞ ðg2 þ ia2Þðg2 þ icrÞ ðg3 þ ia3Þðg31 þ icrÞ

2
64

3
75; ð28bÞ

where cu; cw; and cr are given by Eqs. (22c), (22d), and (22e) respectively.
In the limiting cases where the elastic constraints and inertia approach infinity and/or zero, the

reflection matrices for the typical classical boundary conditions such as hinged (ku ¼ kw ¼ N and
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kr ¼ m ¼ jm ¼ 0), clamped (ku ¼ kw ¼ kr ¼ N and m ¼ jm ¼ 0), and free ðku ¼ kw ¼ kr ¼ m ¼
jm ¼ 0Þ are readily obtained. Note that a similar technique can also be applied to a rigid
intermediate support discussed in Section 4.1.

5. Application: free vibration analysis

The reflection and transmission matrices of waves incident upon point discontinuities are now
combined with the transfer matrix method to analyze the free vibration of the curved beam with
multiple discontinuities. The technique is known as the phase or wave-train closure principle, and
it has been applied to Euler–Bernoulli beams in Refs. [30,32] and axially strained spinning
Timoshenko beams in Ref. [22]. In this section, the wave-train closure principle is used to provide
a systematic approach to the free vibration analysis of curved beams. However, due to the
complexity of wave motions in the extensional curved beam model, care must be taken in applying
the proper reflection and transmission matrices so that they are consistent with the wavenumbers
on both sides of the discontinuity.
Consider a curved beam with constant R with n discontinuities and arbitrary boundaries as

shown in Fig. 6. Define Ri as a generalized reflection matrix which relates the amplitudes of
negative and positive travelling waves at station (discontinuity) i and Ti as the field transfer matrix
between station i and i þ 1 which relates the wave amplitudes by

wþðy0 þ yÞ ¼ Twþðy0Þ or w�ðy0 þ yÞ ¼ T�1w�ðy0Þ; ð29Þ

where

T ¼

e�ig1y 0 0

0 e�ig2y 0

0 0 e�ig3y

2
64

3
75 for Cases I and II; ð30Þ

0=�

+C

−
C

wK

rK

MJM ,

uK

Fig. 5. Wave reflection at a general boundary.
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T ¼

e�ig1y 0 0

0 eig2y 0

0 0 eig3y

2
64

3
75 for Case III; ð31Þ

T ¼

e�ig1y 0 0

0 eig2y 0

0 0 e�ig3y

2
64

3
75 for Case IV: ð32Þ

Based on these definitions, the following relations can be found:

w�
n ¼ Rnw

þ
n ðRn ¼ rnÞ; ð33Þ

w�
ij ¼ Rijw

þ
ij ;

i ¼ 2; 3;y; n � 1 ðstation numberÞ;

j ¼ l ðleftÞ or r ðrightÞ;

(
ð34Þ

w�
1 ¼ T1w�

2l ; ð35Þ

wþ
1 ¼ R1w�

1 ðR1 ¼ r1Þ; ð36Þ

wþ
2l ¼ T1w

þ
1 ; ð37Þ

where, in Eq. (34),

Ril ¼ ri þ tiðR�1
ir � riÞ

�1ti; ð38aÞ

Rir ¼ TiRðiþ1ÞlTi: ð38bÞ

For waves travelling across a curvature change, the formulation of Ril requires particular
attention. For example, if the wave motions in spans 1 and 2 in Fig. 6 are governed by Cases II

θ

+
1w
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1w

+
n

w

+
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−
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−
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Fig. 6. Curved beam with multiple discontinuities and arbitrary boundary conditions.

B. Kang et al. / Journal of Sound and Vibration 260 (2003) 19–4432



and III, respectively, then, the incoming and outgoing waves at station 2 are related by

wþ
2r ¼ tII2IIIw

þ
2l þ rIII2IIw

�
2r; ð39aÞ

w�
2l ¼ tIII2IIw

�
2l þ rII2IIIw

þ
2l ; ð39bÞ

Since w�
2r ¼ R2rw

þ
2r; Eqs. (39a) and (39b) can be combined to give

w�
2l ¼ R2lw

þ
2r; where R2l ¼ rII2III þ tIII2IIðR�1

2r � rIII2IIÞ
�1tII2III: ð40Þ

Therefore, for a geometric discontinuity that alters the wavenumbers, two sets of wave reflection
and transmission matrices are necessary to formulate R. Note that, for geometrically uniform
spans, Eq. (40) reduces to Eq. (38a). Solving Eqs. (33)–(37) gives

ðR1T1R2lT1 � I3�3Þwþ
1 ¼ 0; ð41Þ

where I3�3 is the 3� 3 identity matrix. For non-trivial solutions, the natural frequencies are
obtained from the characteristic equation

CðoÞ ¼ Det½R1T1R2lT1 � I3�3
 ¼ 0: ð42Þ

When the curved beam is geometrically uniform and has homogeneous material properties in
all spans, a single solution form at a given frequency governs the wave motions. In this case, since
the wavenumbers are identical for all the spans, formulation of CðoÞ is straightforward. However,
in general, one needs to consider multiple wave solutions in the spans, depending on the
frequencies and the properties of the discontinuities. Hence, in the derivation of CðoÞ; the wave
reflection and transmission matrices at each station and the field transfer matrix for each span
must be properly determined.

6. Examples

Four examples are presented to demonstrate the application of the wave-train closure principle.
Unless otherwise specified, the curvature parameter for all examples is k ¼ 0:0289: The first
example, which is presented to illustrate the transition between different wave motions, is a single
span curved beam with both ends clamped. A schematic of the system is shown on the top of
Fig. 7. The value of the span angle is y0 ¼ 1801: Fig. 7 shows the plot of CðoÞ: It can be seen that
the frequencies at which Re½CðoÞ
 ¼ 0 and Im½CðoÞ
 ¼ 0 are the natural frequencies of the given
system. Note the abrupt change in slope of CðoÞ at o ¼ 4:164 and o ¼ oc ¼ 34:641: Below
o ¼ 4:164; the wave motion consists of two propagating and four spatially decaying wave
components (Case II), while for 4:164ooooc; the wave motion consists of two propagating and
four attenuating (near field) wave components (Case III). Similarly, for o > oc ¼ 34:641; the wave
motion consists of four propagating and two attenuating wave components (Case IV).
To assess the wave motion behavior of both the extensional and inextensional models over a

broad range of span angles, Table 1 is presented. For the previous example of y0 ¼ 1801 with
clamped ends, it can be seen that the first four natural frequencies fall into Case III. Furthermore,
all the frequencies are below the cut-off frequency and there is no significant difference between
the extensional and inextensional frequencies. It can be also observed that as y0 increases, the
natural frequencies of the lower modes begin to appear in the frequency range of Case II, with
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better agreement existing between the two models. However, as y0 decreases, the first natural
frequency appears in the frequency range of Case IV in which the extensional waves play an
important role in governing the overall wave motion of the curved beam. Considering the case
y0 ¼ 591; the first natural frequency predicted by the extensional curved beam model is o1 ¼
35:0024; which is greater than oc: However, the inextensional curved beam predicts the first
natural frequency to be o1 ¼ 55:6591:
The discrepancy between the extensional and inextensional models can be explained by

examining the locations of the inextensional natural frequencies relative to the cut-off frequency
oc ¼ 1=k of the extensional model. This relative location depends on both the span angle and the
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Fig. 7. Results for a one-span extensional curved beam with clamped–clamped ends for k ¼ 0:0289 and y0 ¼ 1801;
Re½CðoÞ
 (—) and Im½CðoÞ
 (- - -); (a) schematic of beam model; (b) plot of CðoÞ; (c) detail A; (d) detail B.
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curvature parameter k: In general, there will be significant error associated with the inextensional
natural frequencies if they are above the cut-off frequency. However, depending upon boundary
conditions, if the inextensional natural frequencies are sufficiently lower than the cut-off
frequency, the inextensional and extensional natural frequencies are comparable. For example, in
Table 1, it is observed that the free–free boundary conditions show a relatively large discrepancy
between the extensional and inextensional models regardless of whether the natural frequencies
are above or below the cut-off frequency. It is also noted that the non-zero natural frequencies of
the inextensional curved beam with free–free boundary condition are identical to those of the
clamped–clamped case. However, for the extensional curved beam model, they are significantly
different due to the effects of the extensional mode, which provides an additional degree of
freedom to the beam. An analogous behavior can be observed in straight beams where the
clamped–clamped and free–free boundary conditions for an Euler–Bernoulli beam are identical,
while for the Timoshenko beam they are different.
The second example is a two-span extensional curved beam with an intermediate elastic support

as depicted in Fig. 8. The intermediate support consists of three point springs which constraint the
transverse motion in the w direction, the translational motion in the u direction, and the rotational
motion of the cross-sectional element. The total angle of the curved beam is 1801 and the angles of
the two sub-spans are y1 ¼ 111:61 and y2 ¼ 68:41: Both ends of the beam are hinged. As seen in

Table 1

Non-dimensional natural frequencies of a curved beam for k ¼ 0:0289 ðoc ¼ 34:641Þ

Span angle Mode Clamped–clamped Hinged–hinged Free–freea

ðy0Þ Inextensional Extensional Inextensional Extensional Inextensional Extensional

51 1 8095.7848 1247.5675 5181.5009 1246.8388 8095.7848 1247.1131

2 14572.946 2489.7481 11067.889 1295.9490 14572.946 2493.9771

3 26240.991 3740.4334 20733.501 2494.4200 26240.991 2937.7679

4 38009.405 4987.9286 31835.273 3740.2156 38009.405 3741.4749

451 1 97.432713 45.682504 61.572909 34.803987 97.432713 35.432205

2 178.17004 95.832214 134.85983 61.049993 178.17004 98.691915

3 321.06201 142.99514 253.54899 142.25101 321.06201 143.04121

4 467.36686 194.12745 391.21460 142.46441 467.36686 194.39288

901 1 22.625115 22.443037 13.763689 13.687305 22.625115 8.3820157

2 43.256121 28.112525 32.403584 27.419358 43.256121 23.889413

3 78.234248 69.653873 61.672635 38.868229 78.234248 47.718346

4 115.43272 84.655912 96.446257 60.086931 115.43272 77.543681

1801 1 4.3844300 4.3694551 2.2667421 2.2613307 4.3844300 1.8363460

2 9.6518967 9.4982704 6.9232972 6.8784843 9.6518967 5.3028579

3 17.921790 17.704014 13.977669 13.889360 17.921790 11.099972

4 27.523890 25.641709 22.819563 22.334366 27.523890 18.988464

3601 1 0.5664213 0.5661784 0.0000000 0.0000000 0.5664213 0.4376149

2 1.5952033 1.5925419 0.9007386 0.8997446 1.5952033 0.9517570

3 3.3845855 3.3749576 2.4466031 2.4417907 3.3845855 2.1366521

4 5.7649247 5.7302369 4.5966736 4.5843184 5.7649247 3.9645575

aRigid body modes are excluded. Note that there are three rigid body modes in an extensional curved beam with

free–free boundary conditions.
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Table 2, the natural frequencies predicted by the inextensional curved beam are higher than those
from the extensional curved beam and the difference between the two models increases
significantly when frequencies are above the cut-off frequency oc: However, it should be noted
that the effects of rotary inertia and shear deformation on natural frequencies are more
pronounced in higher vibration modes and these effects, which are not included in the present
analysis, may be required in the formulation for more accurate results. Also note that the modular
nature of the wave reflection and transmission matrices presented in this paper allow various

Frequency, ω
0 5 10 15 20 25 30 35 40 45 50

C
(ω

)

-4

-3

-2

-1

0

1

2

3

4

A

0 

1θ
2θ 

1ω 

2ω 3ω
4ω

5ω 6ω

641.34=ω

7ω 

164.4=ω 

(c) 

(b) 

(a) 

Fig. 8. Results for a two-span extensional curved beam with elastic support and hinged ends for k ¼ 0:0289; ku ¼ 10;
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combinations of intermediate supports and boundary conditions to be applied, as illustrated in
the following example.
The third example shows the plot of CðoÞ for the extensional curved beam with an intermediate

elastic support and a point mass. The beam is also supported by springs at both ends. A schematic
of the system is depicted in Fig. 9(a). The total angle of the beam is 1803 and the span angles of the
three sub-spans are y1 ¼ 57:61; y2 ¼ 451; and y3 ¼ 77:41: Note that in general the point mass
decreases the transmission and increases the reflection of the waves, and that at very high
frequencies, there is essentially no wave transmission [33]. In Figs. 9 and 10, it is seen that small
frequency increments Domay be required to find the roots of CðoÞ due to the drastic variations in
CðoÞ which are caused by some of the eigenvalues of the individual sub-spans being close to the
eigenvalues of the entire beam system or because the subsystems are weakly coupled through the
intermediate support. Although the plot of CðoÞ indicates sharp jumps near the natural
frequencies, the functions remain continuous and finite as shown in Fig. 10 so that there are no
difficulties in finding the roots.
The fourth example is an extensional curved beam with three sub-spans of equal span angle but

different radius of curvature. A schematic of the system is depicted in Fig. 11(a). The total span
angle is 1801 and each sub-span angle is 601 for the given geometry. In this example, the form of
the wave solution changes from one sub-span to another and as the frequency is varied. Fig. 12
outlines a general flow chart for computing CðoÞ: In the flow chart, oðnÞ

c1 and oðnÞ
c2 are the critical

frequencies at which the wave motion changes from Case II to III and from Case III to IV,
respectively, in the nth sub-span. The cut-off frequencies oðnÞ

c1 can be readily obtained from the
dispersion equation by solving for the frequency at which four complex wavenumbers change to
imaginary ones, and oðnÞ

c2 ¼ k�1
n : The problem presented here has also been solved by applying the

finite element method (FEM) [19,34] and the cells discretization method (CDM) [34]. In Table 3,
the non-dimensional natural frequencies obtained from the present approach are compared with
those of references [19,34]. Note that the natural frequencies obtained from the present wave
analysis are exact since both propagating and attenuating wave components are considered in the
formulation.
It should be noted that the present wave approach always results in evaluating the determinant

of a 3� 3 matrix (see Eq. (42)) regardless of the number of sub-spans. However, a matrix of size
6n � 6n (n is the number of sub-spans) needs to be considered if one applies the classical method
of separation of variables, which may cause strenuous computations associated with large-order

Table 2

Non-dimensional natural frequencies of the two-span curved beam in Fig. 8

Mode Inextensional Extensional

1 3.1355520 3.1302945

2 7.7944178 7.7405333

3 14.235502 14.1521194

4 23.926261 23.4005797

5 34.528830 33.6470200

6 47.146488 34.1769670

7 63.196015 47.8112102
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matrices. In Fig. 13, the wave approach is compared to the classical method of separation of
variables by plotting CðoÞ for the two-span inextensional curved beam. It is seen that the classical
method of separation of variable results in very large values of CðoÞ as well as very large slopes
near the natural frequencies. For this example, the maximum order of the amplitude of CðoÞ by
the method of separation of variables is 1028 within the given range of frequencies. This makes the
search for the roots of CðoÞ extremely difficult since the convergence of most root-finding routines
(e.g., Newton–Raphson method or secant method) depends strongly on the slope of the curve
near the roots. Although both approaches lead to the same roots, the wave approach produces a
different characteristic equation from which the natural frequencies can be more easily obtained.
Mead [30] also showed that the phase closure principle led to a different characteristic equation
for the Euler–Bernoulli beam. As pointed by Mace [32], the only source of numerical difficulty in
this wave approach occurs when flexural components of the whole system contain an insignificant
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views at A, B, C, and D.

B. Kang et al. / Journal of Sound and Vibration 260 (2003) 19–4438



amount of the total mass or flexibility of the system. In this case, the beam spans then appear
physically as rigid bodies or massless elements, resulting in the wavenumber becoming very small,
and thus the representation of the beam displacement in terms of waves becomes unrealistic. This
situation leads to significant rounding errors in the computations. In practice, however, the
contribution of beam mass and flexibility are usually large enough to avoid this difficulty.

7. Summary and conclusions

In this paper, a systematic approach based on wave propagation is presented to study the free
vibration of an extensional/inextensional multi-span curved beam with general support
conditions. For the extensional curved beam, there exist two frequency branches above the cut-
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8ω6 ω

0 
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(d) (c) 

(a) (b)

Fig. 10. Enlarged views of CðoÞ at the indicated locations in Fig. 9; (a) detail A; (b) detail B; (c) detail C; (d) detail D.

Table 3

Non-dimensional natural frequencies of the three-span curved beam in Fig. 11

Mode Present FEM CDM

12 curved elements 24 straight elements 100 degrees of freedom

Ref. [34] Ref. [19] Ref. [34] Ref. [34]

1 2.6833155 2.680 2.701 2.685 2.671

2 4.8337572 4.824 4.828 4.828 4.780

3 9.5647244 9.536 9.543 9.543 9.413

4 14.5850042 14.527 14.535 14.535 14.309

5 21.8646005 21.749 21.751 21.751 21.265
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off frequency, with the cut-off frequency being defined as the inverse of the curvature parameter.
One branch contains wave components that are flexural mode dominating while the other
contains wave components with extensional mode dominating. Based on the nature of the
wavenumbers of the six wave components, the wave motions in the extensional curved beam can
be classified into four possible types, with each type being represented by a unique harmonic wave
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Fig. 11. Results for a three-span extensional curved beam with curvature changes and clamped–clamped ends for

k1 ¼ k3 ¼ 0:01; and k2 ¼ 0:02; Re½CðoÞ
 (—) and Im½CðoÞ
 (- - -); (a) schematic of beam model; (b) plot of CðoÞ; (c)
detail A.
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solution. The wave motions at the discontinuities are described by the wave reflection and
transmission matrices, which include the effects of attenuating wave components. These wave
reflection and transmission matrices are derived for kinetic and geometric discontinuities as well
as reflection matrices for various boundary conditions. By applying the wave-train closure
principle, the wave reflection and transmission matrices at discontinuities and boundaries are
combined with the field transfer matrices, from which characteristic equations of extensional
multi-span curved beams are obtained in a systematic manner. The proposed wave approach is
exact and results in recursive algorithms that always involve computations of 3� 3 matrices

Fig. 12. Algorithm for computing the characteristic equation in example 4. Superscripts denote station numbers (or

span numbers for oc1; oc2; and T). i; j; and k denote the wave motions of the three cases.
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regardless of the number of sub-spans. Four examples are presented to illustrate the procedure
and compare the results of the present technique with other methods.

Appendix A. Derivation of the dispersion equation

The equations for the right side ðx ¼ 0þÞ of a curved beam with a radius of curvature R; are

EI

R3r
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�
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Rr

W þ
@U
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¼ rARr

@2W

@T2
; ðA:1aÞ
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Fig. 13. Comparison of amplitudes and slopes of CðoÞ between the wave approach and standard method of separation
of variables for a two-span inextensional curved beam with y1 ¼ 1101; y2 ¼ 701; and kr ¼ 10; Re½CðoÞ
 (—) and
Im½CðoÞ
 (- - -). Dot-dashed curve (- � -) shows the result by the standard method of separation of variables; (a)
schematic of beam model; (b) plot of CðoÞ:
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Upon applying the non-dimensional parameters and variables in Eqs. (2) and (4) with R ¼ Rl and
Rr ¼ sRl to Eq. (A.1), one obtains

k2
@3

@y3
u �

@w

@y

� �
� s2 w þ

@u

@y

� �
¼ �k2s4o2w; ðA:2aÞ

k2
@2

@y2
u �

@w

@y

� �
þ s2

@

@y
w þ

@u

@y

� �
¼ �k2s4o2u: ðA:2bÞ

The harmonic wave solutions of Eq. (A.2) can be assumed as

wðy; tÞ ¼ Cwe
iðgry�otÞ; ðA:3aÞ

uðy; tÞ ¼ Cue
iðgry�otÞ; 0pyp2p; ðA:3bÞ

where grðk;o;sÞ denotes the wavenumber which differs from g ¼ gl : Substitution of the harmonic
wave solutions (A.3) into Eq. (A.2) leads to

s2 þ k2ðg4r � s4o2Þ igrðs
2 þ g2r k2Þ

igrðs
2 þ g2r k2Þ �s2g2r þ k2ðs4o2 � g2r Þ

" #
Cw

Cu

( )
¼ 0: ðA:4Þ

For non-trivial solutions, the dispersion equation is

g6r þ ð�2� s2k2o2Þg4r þ f1� ðs2 þ k2Þs2o2gg2r þ ðs2k2o2 � 1Þs4o2 ¼ 0: ðA:5Þ
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